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In this paper, we theoretically investigate the propagation properties of probe and mixing fields in a quantum
well waveguide. This waveguide is driven by two strong control �pumping and coupling� fields and a weak
probe field. Under appropriate parameters condition, the electron spin coherence can suppress the absorption
and enhance the nonlinear susceptibilities of the probe �or mixing� field. This study reveals that probe �or
mixing� field can form soliton pairs and propagate in the quantum well waveguide with slow group velocity.
We also study the soliton collision and dynamics evolution. The results show that the propagation of soliton
can be strongly modified by the electron spin coherence.
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I. INTRODUCTION

In recent years, people have paid considerable attentions
to the study of electron spin coherence in semiconductors.
This may be due to its long spin-coherence times which have
been observed in n-doped semiconductors �1,2�. Previous
work demonstrated that the ability to control electron spin
states in semiconductors is important in spintronics and
quantum information processing �3–6�, so it is necessary to
fast and coherently manipulate local spin states and to con-
trol and operate spin coherence in semiconductor nanostruc-
tures �7–10�. Wu et al. �11� used picosecond pulses to dis-
play phase-sensitive partial rotations of the electron spin
vector in an ensemble of singly charged quantum dots.
Mikkelsen et al. �12� used time-resolved Kerr rotation spec-
troscopy to monitor the coherent evolution of an electron
spin in a single-quantum dot. Chen et al. �13� investigated
the effects of disorder on electron spin dynamics in a semi-
conductor quantum well and determined the density of states
by measuring the electron Landé g-factor dependence on
density. Their results showed that the weakly localized spin
has the longer spin coherence.

On the other hand, there has been substantial research
interest in the investigation of quantum coherence in atomic
and semiconductor media. Many interesting physical phe-
nomena have been demonstrated such as electromagnetically
induced transparency �EIT� �14–20�, lasing without inver-
sion �21–23�, slow and stopped light �24�, and stimulated
Raman adiabatic passage �25�. Quantum coherence cannot
only modify the linear absorption and dispersion properties,
but also enhance the nonlinear optical processes such as
highly efficient four-wave mixing �26–28� and ultraslow op-
tical soliton �29�.

Optical soliton represents a fascinating manifestation of
nonlinear phenomena in nature and receives a great deal of
attention. Because the formation of temporal and spatial soli-
ton can preserve shape propagation in nonlinear media, soli-
ton can occur in many states of matter such as optical fiber
�30,31�, semiconductor �32,33�, molecular magnets �34,35�,
Bose-Einstein condensed atomic vapor �36–39�, and cold

atomic medium �29,40,41�. Especially, theoretical study
shows that the life-broadened atom media can support the
propagation of a new class of two-color ultraslow and super-
luminal optical solitons �42,43�. And the research of the tem-
poral �44–46� and spatial �47–49� vector optical solitons also
has received much attention because of the promising appli-
cations for the design of new types of all-optical switches
and logic gates. Recently, ultraslow temporal vector optical
solitons in a cold atomic medium under Raman excitation
have been discussed and the ultraslow Manakov temporal
vector optical solitons can be realized by adjusting the Rabi
frequencies of the control fields �50�.

There have been several studies about the EIT and slow
light propagation in systems of semiconductor quantum well
�QW� waveguide �WG� via electron spin coherence. Li et al.
�51� proposed a theoretical scheme to realize EIT via robust
electron spin coherence in a semiconductor quantum well
waveguide. Their results displayed that the EIT in the wave-
guide is strongly modified by the electron spin coherence.
Chang et al. �52� investigated the slow light phenomenon in
a quantum well waveguide using EIT. They pointed out that
the electron spin coherence and the strain-induced can en-
hance the performance of slow light. Palinginis et al. �53�
experimentally realized slow light propagation via coherent
population oscillation in a GaAs quantum well waveguide.
Yang et al. �54� proposed a theoretical scheme to realize
four-wave mixing via electron spin coherence in a wave-
guide. Their results displayed that electromagnetically in-
duced absorption and superluminal propagation could be re-
alized in the waveguide at room temperatures.

In this paper, we discuss the propagation properties of the
weak probe �or mixing� field and the formation of slow soli-
ton pairs in a quantum well waveguide which the electron
spin coherence is considered. In general, the photon does not
strongly couple to the spin degree of freedom, but it is pos-
sible to use spin-orbit coupling in the quantum well wave-
guide to generate spin polarized distributions. So interband
dipole optical transitions between the doubly degenerate
heavy-hole �hl� �Jz= �3 /2� and light-hole �lh� �Jz= �1 /2�
valence bands and the doubly generate conduction bands
�Sz= �1 /2�, respectively. Figure 1 shows the schematic of
energy levels and the corresponding dipole-allowed transi-
tions. The electron spin coherence is induced through the
transition from �a� to �b� and �b� to �d�. Such a model with*Corresponding author; jibl@foxmail.com
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the electron spin coherence has many interesting nonlinear
optical processes such as EIT �51�, slow light �52,53�, and
four-wave mixing �54�. However, the previous theoretical
and experimental works studying do not include the forma-
tion of slow optical soliton pairs. We focus on the evolution
of weak field, absorption, dispersion, and the optical Kerr
nonlinearity effect. Finally, we will show that slow soliton
pairs can form and propagate in the waveguide. To the best
our knowledge, such slow optical soliton pairs in a quantum
well waveguide with the electron spin coherence have never
been studied.

It is noted that electron spin coherence can arise through a
coherent superposition of two spin states in the conduction
band of a semiconductor quantum well. More recent studies
have displayed that conduction-electron spin coherence has a
very long decoherence time compared to other forms of
quantum coherence �5�. In semiconductors, electron spin co-
herence can be preserved over remarkably long time and
length scales. Especially, electron spin coherence can persist
to room temperature �2,55�. This fact and our present results
indicate that slow soliton pairs may be realized in semicon-
ductor quantum well at room temperatures. Due to these ro-
bust qualities, electron spin coherence promises to be an ex-
cellent model system for exploring coherent quantum
phenomena in semiconductors.

Some literatures have been proposed to investigate ul-
traslow optical soliton pairs in atomic systems �42,43�. Even
in semiconductor quantum well system, this is motivated by
studying the nonlinear phenomena through the gas of four-
level cold atoms �42,43,56�. However, there are some differ-
ences between the two situations. Firstly, the medium studied
here is solid, which is much more practical than that in
atomic media. Secondly, semiconductor quantum well sys-
tem has high nonlinear optical coefficients and large electric-
dipole moments of lh transitions due to the small effective
electron mass. In semiconductor, electron spin coherence has
a smaller decoherence rate than the other forms of quantum
coherence, so the robustness of the electron spin coherence
can make it as a highly promising platform for optical ma-
nipulation of quantum coherence and the development of
coherent quantum devices.

II. MODEL AND EQUATION OF MOTION

Let us consider a double V-type quantum well waveguide
system as shown in Fig. 1. To include electron spin coher-
ence, a strong field, which is polarized along the z axis,
drives the transition from �c� to �d� and a weak probe field,
which is �− polarized, drives the transition from �c� to �a�.
The electron spin coherence can also be induced through the
transition from �b� to �a�, which is driven by the mixing field,
and the transition from �b� to �d�, which is driven by the
second strong �+ polarized field. Consequently, we have a
coupled double-V scheme. The semiconductor quantum well
WG structure, considered here, consists of a �110� GaAs sub-
strate, 1.18 �m of Al0.29Ga0.71As �WG cladding�, 0.17 �m
of Al0.15Ga0.85As �WG core�, 0.40 �m Al0.30Ga0.70As �WG
cladding�, 60 nm Al0.3Ga0.7As �barrier�, 13 nm GaAs �QW�,
and a 20 nm GaAs cap layer. The overall structure provides
a planar waveguide �57�. We presume that the lateral exten-
sion of the waveguide is much greater than the optical wave-
length and the fundamental mode can approximately be rec-
ognized as a plane wave. As explained in Ref. �51�, the
electron spin coherence can greatly change the absorption
and dispersion of probe field in the semiconductor quantum
well structure. The effects of the two light-hole coherence
can be neglected because the nonradiative coherence be-
tween the two light-hole valence bands decays quickly than
electron spin coherence. This system has been experimen-
tally realized in a semiconductor quantum well waveguide
�53�. Taking the dipole and rotating wave approximation, in
the interaction picture, the Hamiltonian can be written as

Ĥint
I /� = �1�b��b� + �−�c��c� + ��− − �2��d��d�

− ��−eik�−·r��a��c� + �+eik�+·r��d��b� + H.c.�

− ��1eik�1·r��a��b� + �2eik�2·r��d��c� + H.c.� , �1�

where the detunings are defined as �1=�1−�ab , �−
=�−−�ac, and �2=�2−�dc. Here, �mn= ��m−�n� /�
�m ,n=a ,b ,c ,d ; m�n ; �m�n� is the energy of state
�m�n���, � j �j=1,2 ,�� is the frequency of the correspond-
ing laser, and �+= ��� bd ·e�+�E+ /� , �−= ��� ac ·e�−�E− /� ,
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FIG. 1. �a� The schematic of energy levels. The valence-band states are labeled with Jz and the conduction-band states are labeled with
Sz= 1

2 �spin up� and Sz=− 1
2 �spin down�. This sample interacts with the �+ polarized field ��+� and the linear polarized field ��2� serving as

the strong pump lasers, and the �− polarized probe field ��−� and the generating mixing field ��1� serving as the weak fields. Here, 2� j

�j=1,2 ,�� denote the corresponding Rabi frequency, respectively. �b� Definition of coordinate frame and polarization configuration for the
pump-probe fields. The linear polarized field is polarized along the z axis �the growth direction� and light propagates in the x direction.
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�1= ��� ab ·e�1�E1 /� and �2= ��� dc ·e�2�E2 /� are the corre-
sponding Rabi frequencies with �� mn being the dipole mo-
ment for the relevant transition �m�↔ �n�, Ej�j= � ,1 ,2� be-
ing the corresponding electric field amplitude, and e� j being
the polarization unite vector of the electric field. By adopting
the standard approach �58� and including the coherent wave
mixing process, we can write the density-matrix elements as
follows:

	̇bb = − 
2l	bb + i�1
�	ab − i�1	ba + i�+

�	db − i�+	bd,

�2a�

	̇cc = − 
1l	cc + i�−
�	ac − i�−	ca + i�2

�	dc − i�2	cd,

�2b�

	̇dd = − 
3l	dd + i�+	bd − i�+
�	ba + i�2	cd − i�2

�	dc,

�2c�

	̇ac = i��− + i
1�	ac + i�−�	cc + 	aa� − i�2	ad + i�1	bc,

�2d�

	̇ab = i��1 + i
2�	ab + i�1�	bb − 	aa� + i�−	cb − i�+	ad,

�2e�

	̇ad = i���− − �2� + i
3�	ad

+ i�1	bd + i�−	cd − i�+
�	ab − i�−	ac, �2f�

	̇bd = i���− − �2 − �1� + i
4�	bd

+ i�+
��	dd − 	bb� − i�2

�	bc + i�1
�	ad, �2g�

	̇bc = i���− − �1� + i
5�	bc

− i�−	ba − i�2	bd + i�+
�	dc + i�1

�	ac, �2h�

	̇cd = i��2 + i
6�	cd + i�−
�	ad

+ i�2
�	dd − i�+

�	cb − i�2
�	cc, �2i�

	aa + 	bb + 	cc + 	dd = 1, �2j�

where 
i �i=1–6� denote the total dephasing rates, which are
phenomenologically added. We have utilized the phase
matching condition k�1=k�++k�−−k�2. The overall dephasing
rates 
i�i=1,2� are defined by 
1= �
cl+
ca

d � /2, 
2= �
bl
+
ba

d � /2, 
3= �
dl+
da
d +
d� /2�
d /2, 
4= �
bl+
dl+
bd

d � /2,

5= �
bl+
cl+
bc

d � /2, and 
6= �
dl+
cl+
cd
d � /2. 
 jl is due to

longitudinal optical photon emission events at low tempera-
ture, 
ij

d may originate not only from electron-electron scat-
tering and electron-phonon scattering, but also from inhomo-
geneous broadening due to the scattering on interface
roughness, and 
d is the decay rate for the spin coherence.
Then, under the slowly varying envelope approximation, the
evolution equation for the slowly varying amplitudes

�

�x
�1 +

1

c

�

�t
�1 = i

N�1��ab�2	ab

2�c�0
, �3a�

�

�x
�− +

1

c

�

�t
�− = i

N�−��ac�2	ac

2�c�0
, �3b�

where N is an effective density averaged over the cross sec-
tion of the probe field. Supposing the probe and mixing fields
are weak, the control �coupling and pumping� fields are
strong enough, and the system is initially in the electron state
�a�, so we can adopt a perturbation treatment for obtaining
the approximation solution. The pumping field and coupling
field are strong enough to make �=�1�−� /�2�+� be a small
parameter. Within an adiabatic framework, we make the
asymptotic expansion 	mn=�k	mn

�k� �	mn
�k� is the kth-order part

of 	mn ,m ,n=a ,b ,c ,d� and 	ma
�k� 	�k. Then, the approxima-

tion solutions, up to the first order in the weak fields ��1�−��,
are given as

	ab
�1� �

�R1�R3� − ��2�2��1 + �+�2
��−

R1�R2�R3� − R1���+�2 − R2���2�2
, �4a�

	ac
�1� �

�2�+
��1 + �R2�R3� − ��+�2��−

R1�R2�R3� − R1���+�2 − R2���2�2
, �4b�

	ad
�1� �

R1��+
��1 + R2��2

��−

R1�R2�R3� − R1���+�2 − R2���2�2
, �4c�

where R1�=�−+ i
1, R2�=�1+ i
2, and R3�= ��−−�2�+ i
3. Be-
fore considering the nonlinear evolution of weak probe and
mixing fields, we first analyze the relevant linearized results
by neglecting the nonlinear term in the right-hand side of
Eqs. �3a� and �3b�. Performing Fourier transform for Eqs.
�3a� and �3b�, we obtain the solutions for probe and mixing
fields

�−�x,�� =
�−�0,��
U+ exp�ixK+���� − U− exp�ixK−�����

U+��� − U−���
,

�5a�

�1�x,�� =
�−�0,��
exp�ixK+���� − exp�ixK−�����

U+��� − U−���
, �5b�

where �−�x ,�� and �1�x ,�� are the Fourier transforms of
�− and �1, respectively. We have used the initial condition
for generating mixing field, �1�0,��=0, when we obtain
Eqs. �5a� and �5b�. �−�0,�� is the Fourier transform of
�−�0, t� and �−�0, t� is the probe field at the entrance x=0.
The expressions of U���� and K���� read

K���� =
�

c
+


ab�R1R3 − ��2�2�+
ac�R2R3 − ��+�2���S���
R1R2R3 − R1��+�2 − R2��2�2

= K�
�0� + K�

�2�� + K�
�2��2 + ¯ , �6a�

U���� =

ac�R2R3 − ��+�2� − 
ab�R1R3 − ��2�2� � �S���

2
ab�+�2
�

= U�
�0� + U�

�1�� + O��2� , �6b�
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where 
ab�c�=N�1�−���ab�c��2 / �2�c�0�, Rj���=�+Rj��j
=1,2 ,3�, and S���= �
ab�R1R3− ��2�2�−
ac�R2R3− ��+�2��2

+4
ab
ac��+�2��2�2. The physical interpretation of Eq. �6a� is
rather clear. Im�K�

�0�� describes absorption coefficient of the
probe and mixing fields, K�

�1� determines the propagation ve-
locity, and K�

�2� represents the group-velocity dispersion. We
define absorption coefficient ��=2 Im�K�

�0��.
A complete description of probe and mixing fields by per-

forming inverse Fourier transform often requires much com-
plicated calculation. However, considerable physical insight
is gained by considering the approximate analytic solution,
which takes a simple form if we focus on the adiabatic re-
gime. Within an adiabatic framework, the power-series ex-
pansion of K���� and U���� on � converge rapidly. We
substitute the power-series expansion of K���� and U����
on � into Eqs. �5a� and �5b�. In order that Eqs. �5a� and �5b�
are self-consistent for the wave propagating to the right, we
can take approximate inverse Fourier transform by neglect-
ing O��2� in K�����K�

�0�+K�
�1�� and O��1� in U����

�U�
�0�. This gives

�1�x,t� = �̃1
+��+� − �̃1

−��−� , �7a�

�−�x,t� = �̃−
+��+� − �̃−

−��−� ,

=U+
�0��̃1

+��+� − U−
�0��̃1

−��−� �7b�

where ��= t−xK�
�1�, group velocity is determined by

the relationship 1 /Vg
�=Re�K�

�1��, and �̃−
�����=�−

�����
�exp�ixK��0��. With the help of Eqs. �7a� and �7b�, we find
�−

��t� satisfy the following relation:

�−
��t� =

U�
�0���−�0,t� − U�

�0��1�0,t��
U+

�0� − U−
�0� . �8�

We can obtain the relationship �̃−
�����=U�

�0��̃1
����� from

Eq. �7b�. If the given input fields �1�0, t� and �−�0, t� satisfy
the condition �−�0, t� /�1�0, t�=U+

�0� or �−�0, t� /�1�0, t�
=U−

�0�, we obtain �−
+�t�=0 or �−

−�t�=0. The result demon-
strates that there exists no K+ or K− mode excitation in the
waveguide. In this paper, we consider that no input mixing
field at x=0, i.e. �1�0, t�=0. This leads �−�0, t� /�1�0, t�
�U�

�0�. Equation �8� reduces to the simple expression
�−

��t�=U�
�0��−�0, t� / �U+

�0�−U−
�0��. So both K− and K+ modes

will be excited in the semiconductor quantum well medium.
The two modes will quickly walk off each other due
to K+ and K− modes having different group velocities and
absorption coefficients for the typical parameters. In
Figs. 2 and 3, we plot �+ as a function of Rabi frequency
�+ /
1 ��2 /
1� with different values of decay rate 
3. From
Figs. 2 and 3, we find that, in the appropriate parameter
regimes, �+ is reduced due to electron spin coherence and
K−��� mode decays quickly. Thus, we can neglect the K−���
mode after a very short propagation distance. The mixing
field under these conditions takes the form �1�x , t�
=�̃1

+��+�−�̃1
−��−���̃1

+��+�=�1
+ exp�ixK+�0�� and the probe

field takes the form �−�x , t���̃−
+��+�=�−

+��+�exp�ixK��0��,
so we obtain

�− = U+
�0��1, �9�

where �−
+ and �1

+ are slowly varying functions.
The linear susceptibility are obtained

�− =
N��ac�2

��0

�2�+
��1/�− + R2�R3� − ��+�2

R1�R2�R3� − R1���+�2 − R2���2�2
�10�

and
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�1 =
N��ab�2

��0

R1�R3� − ��2�2 + �+�2
��−/�1

R1�R2�R3� − R1���+�2 − R2���2�2
, �11�

where �− and �1 are the probe and mixing fields suscep-
tibility, respectively. For giving the more intuitionistic char-
acteristic of susceptibility, we present Figs. 4 and 5. In
Fig. 4, we take �
1=65 �eV, 
2=
1, 
3 /
1=10−4, �+ /
1
=8.5, �2 /
1=8.5, �1=�2=0.01
1, and N��ac�2 /��0=1. It is
shown that a sharp “hole” in the absorption line at �−=0. In
Fig. 5, we select �+=�2=
1 and the other parameters are
the same as Fig. 4. From Fig. 5, one can control the absorp-
tion of the probe field by changing detuning �− and obtain a
wide transparency window. Figures 4 and 5 also show the
steep positive dispersion near zero detuning which indicate
the group velocity can be effectually reduced. The lowest-
order nonlinear susceptibility of the mixing field is

�1
N =

N��ab�2

��0

I11��I11�2 + �I22�2 + �I33�2�
I44�I44�2

, �12�

where I11=R1�R3�− ��2�2+�+�2
�U+

�0�, I22=�2�+
� + �R2�R3�

− ��+�2�U+
�0�, I33=R1��+

� +R2��2
�U+

�0�, and I44=R1�R2�R3�
−R1���+�2−R2���2�2. In general, the high-order nonlinear po-
larization is very small. Therefore, the lowest-order nonlin-
ear polarization is sufficient to describe the nonlinear effects.

Next, the lowest-order nonlinear susceptibility is included in
propagation equation and the propagation properties of the
mixing field are discussed.

III. SOLITON SOLUTIONS AND NONLINEAR DYNAMICS

The next task is to analyze the effect of Kerr nonlinear on
the mixing field evolution. Under the slowly varying enve-
lope approximation, the nonlinear propagation equation of
the mixing field in the quantum well waveguide can be writ-
ten as �30�

�

�x
�1 +

1

Vg
+

�

�t
�1 + i

K+
�2�

2

�2

�t2�1 +
�+

2
�1 = ik1

�1
N

2
��1�2�1,

�13�

where k1=�1 /c and c is the velocity of light in vacuum. By
defining �=x and �= t−x /Vg

+ and using variable substitution

W=
�1

2c

N��ab�2

��0

��I11�2+�I22�2+�I33�2�I11

I44�I44�2 , we can arrive a simple expres-
sion for Eq. �13�

i
�

��
�1��,�� −

K+
�2�

2

�2

��2�1��,�� +
�+

2
�1��,��

= W��1��,���2�1��,�� . �14�

This is the one-dimensional complex Ginzburg-Landau equa-
tion. It describes vast variety nonlinear phenomena, such as
slightly unstable nonlinear waves and second-order phase
transitions. In this equation, if all of the coefficients are real,
Eq. �14� can be simplified to the real Ginzburg-Landau equa-
tion. Fortunately, the absorption coefficient �+ is very small
so it can be neglected in Eq. �14� �see Figs. 2 and 3�. The
numerical calculation demonstrates that K+

�2� and W have
imaginary parts, but the imaginary parts are much smaller
than the corresponding real parts, i.e., K+

�2�=K+r
�2�+ iK+i

�2�

�K+r
�2� and W=Wr+ iWi�Wr, then Eq. �14� can be simplified

to the standard nonlinear Schrödinger equation

i
�

��
�1��,�� −

K+r
�2�

2

�2

��2�1��,�� = Wr��1��,���2�1��,�� .

�15�

According to Refs. �59,60�, the standard nonlinear
Schrödinger equation admits bright soliton when K+r

�2�Wr�0
and dark soliton �localized nonlinear waves �or holes�
existing on a stable continuous wave �or extended finite-
width� background� when K+r

�2�Wr�0. N-order solitons
�N=2,3 , . . .� are also described by the general solution of Eq.
�15�. The single soliton is called fundamental soliton and the
N soliton �N=2,3 , . . .� is named as the higher-order soliton.
And whether the solution to Eq. �15� is the bright soliton or
the dark soliton depends on the sign of the product K+r

�2�Wr.
The solution of Eq. �15� is referred to as soliton solution
because its shape does not change during its propagation.
When K+r

�2�Wr�0, Eq. �15� has the bright soliton solution
�59,60�

�1��,�� = �10 sech��/��exp�− i�Wr��10�2/2� , �16�

where the amplitude �10 and width � are arbitrary constants,
which are subjected only to the constraint ��10��2=K+r

�2� /Wr,
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FIG. 4. Real and imaginary parts of the probe field susceptibility
�− as a function of detuning �− /
1. The imaginary part �dashed
line� of susceptibility �− describes absorption. The real part �full
line� of susceptibility �− describes the refraction.
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FIG. 5. Real and imaginary parts of the mixing field suscepti-
bility �1 as a function of detuning �− /
1. The imaginary part
�dashed line� of susceptibility �1 describes absorption. The real part
�full line� of susceptibility �1 describes the refraction.
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and sech�� /�� is the hyperbolic secant function. The func-
tion in this solution provides for the localization of the soli-
ton. This means that if an initial pulse with pulse shape given
by Eq. �16� is launched inside an ideal lossless waveguide,
the pulse will propagate in the same manner as the single
soliton pulse case, i.e., undistorted and without change in
shape for long distances. The probe and mixing fields are
related to bright fundamental soliton by Eq. �9�, �−�� ,��
=U+

�0��1�� ,��. The probe and mixing fields have consider-
ably different carrier frequencies and have the same ampli-
tude envelope, which clearly illustrate that the pulse shape
can be bright soliton types. This displays the concept of
matched soliton pairs.

In the next study, the numerical simulation on dynamic
evolution of nonlinear propagation equation was investi-
gated. Here, we focused on the one-dimensional nonlin-
earevolution Eq. �14�. Using the initial pulse form Eq. �16�,
numerical simulation was carried out to solve Eq. �14�. The
split-step Fourier transform algorithm with constant time
steps was used. First, we study the fundamental bright soli-
ton evolution in the waveguide then we discuss the effect
of electron spin coherence on soliton propagation. Second,
we analyze the collision of two solitons under different ini-
tial conditions. With the help of the split-step Fourier trans-
form algorithm, direct numerical simulations of Eq. �14�

with the initial wave form �16� are performed in Fig. 6.
In Fig. 6�b�, we plot the relative soliton intensity of mixing
field versus dimensionless � /� and � / l and we select
�
1=65 �eV, 
2=
1, 
3 /
1=0.5�10−4, �2=2�2=2
1,
�−=0.018
1, �1=−�2=180
1, �2=0.0095
1, and 
ab
=
ac=100
1, then we obtain �+�4.16�10−4 cm−1,
W��4.57−0.003i��10−22 s2 cm−1, K+

�2���2.32−0.01i�
�10−18 s2 cm−1, and Vg

+ /c�0.02. With above parameters,
one obtains K+r

�2�Wr�0, so the bright soliton can form in the
quantum well waveguide. As shown in Fig. 6�b�, the funda-
mental bright soliton can preserve its shape during its propa-
gation. It is shown that fundamental bright soliton can propa-
gate in the waveguide without absorption in Figs. 6�a� and
6�b�. However, when electron spin-coherence decay in-
creases, the bright soliton intensity reduces in a short propa-
gation distance, which is shown in Figs. 6�c� and 6�d�. These
results can be explained as follows: states �a�, �b�, and �d�
create a V-type system and the strong control field �+ creates
two dressed states �� �� �b�� �d�. The weak mixing field �1
exhibits two path transitions to the two dressed states. So the
absorption of weak mixing field will be reduced due to quan-
tum coherence with low electron spin-coherence decay.
However, the quantum coherence can be destroyed due to the
increasing electron spin-coherence decay. Then, we have also
investigated the collision of two-soliton evolution with dif-
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FIG. 6. �Color online� Space-time evolution of the soliton intensity with �a� 
3 /
1=0.1�10−4, �b� 
3 /
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3 /
1=1
�10−4, and �d� 
3 /
1=10�10−4. Other parameters of �a�, �c�, and �d� are the same as �b�, which are given in the main text.

LIU et al. PHYSICAL REVIEW E 81, 036607 �2010�

036607-6



ferent initial conditions by using numerical simulations as
shown in Fig. 7. We have selected all the parameters that are
the same as in Fig. 6�b�. Figure 7�a� shows the evolution of
a soliton pair with an initial separation for the same soliton
amplitude and phase. In this case, the two solitons exhibit
attraction interaction and periodically collide along the
waveguide length. We clearly see that the solitons firstly col-
lide and then recover their initial waveforms after the inter-
action in one period. When the solitons are out of phase and
also have the same amplitudes, the interaction between two
solitons is repellency, which is shown in Fig. 7�b�. From Fig.
7�b�, we see that two solitons walk into each other in an
initial stage then separate from each other while recovering
their initial waveforms. And their spacing increases with dis-
tance monotonically due to the repellency interaction.

IV. CONCLUSIONS

We have theoretically investigated the propagation prop-
erties of probe and mixing fields in a quantum well wave-
guide. Our scheme used lh transitions in the quantum well
waveguide to induce electron spin coherence in the presence
of two strong fields and a weak field. The results revealed
that probe �or mixing� field consists of two modes with dif-
ferent group velocity and absorption. The long lifetime elec-

tron spin coherence could restrain absorption of weak field
and enhance the nonlinear susceptibilities. Under the slowly
varying envelope approximation, we discussed the propaga-
tion equation of weak field which includes the higher-order
nonlinear term. Under appropriate conditions, the optical
soliton pairs formed in the quantum well waveguide and
freely propagated with slow group velocity. With the help
of the split-step Fourier transform algorithm, the numerical
procedure was used to study the simulation on dynamic
evolution of soliton. Numerical simulation results clearly
demonstrated that the soliton can propagate in the quantum
well waveguide and the electron spin coherence can effect
the propagation of soliton.
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